TILLAGE EFFECTS ON SOIL FUNCTIONAL PROPERTIES: A REVIEW

  • N. O. Didenko Institute of Water Problems and Land Reclamation of NAAS, Kyiv, 03022, Ukraine https://orcid.org/0000-0002-0654-4231
  • S. S. Kolomiiets Institute of Water Problems and Land Reclamation of NAAS, Kyiv, 03022, Ukraine https://orcid.org/0000-0002-4329-4382
  • A. S. Sardak Institute of Water Problems and Land Reclamation of NAAS, Kyiv, 03022, Ukraine https://orcid.org/0000-0002-0540-9492
  • K. R. Islam Soil, Water, and Bioenergy Resources, The Ohio State University South Centers, Piketon, Ohio, USA http://orcid.org/0000-0001-9332-5493
  • R. C. Reeder Dept. of Food, Agriculture and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
Keywords: Climate change, soil health, cover crop, chemigation, Scopus, Ukraine

Abstract

Soil is the foundation of all-natural production systems. There is a necessity to study the management systems impact on soil functional properties and crop productivity in response to climate change effects. Our review was conducted using published databases of Ukrainian and worldwide peer-reviewed publications, including high-quality databases in Scopus, Web of Science, ResearchGate, Ukrainian specialized publications, and other web sources to evaluate the effects of tillage, with- and without cropping diversity, cover crops, and chemigation, on soil functional properties associated with soil health and crop productivity. Globally used different types of tillage practices (plowing vs. no-till) affect soil biology, nutrient cycling and organic matter accumulation, water, nutrient, and air ecosystems, changes in the soil structural and hydrological properties, and factors responsible for soil erosion and degradation were evaluated. The relevance of the research is appropriate due to global climate change and the transition of farmers converting from plowing to minimum tillage technologies, including no-till in order to achieve economic crop production with enhanced agroecosystem services. While both plowing and minimum tillage technologies have contrasting benefits and limitations, there is a lacking of consistent advantages of one tillage technology over the other one to support economic crop production, regenerate soil health, and enhance agroecosystem services. Currently, no-till technologies are increasingly adopted by farmers in Ukraine; however, farmers are looking for evidence-based knowledge and the government to remove roadblocks. The issue is increasingly becoming more relevant in connection with climate change effects, which require further studies.

Author Biographies

N. O. Didenko, Institute of Water Problems and Land Reclamation of NAAS, Kyiv, 03022, Ukraine

Ph.D.

S. S. Kolomiiets, Institute of Water Problems and Land Reclamation of NAAS, Kyiv, 03022, Ukraine

Ph.D.

References

1. Adamenko, A. (2021). Fosfor dlya roslyn v umovakh defitsytu volohy [Phosphorus for plants in conditions of moisture deficit]. Ahronom. Available at: https://www.agronom.com.ua/fosfor-dlya-roslyn-v-umovah-defitsytu-vology/. [in Ukrainian].
2. Adamchuk, A. (2018). Yak Pivden' Ukrayiny prystosovuyet'sya do klimatychnykh zmin: ukrayins'ko-amerykans'ki doslidzhennya [How Southern Ukraine is Adapting to Climate Change: Ukrainian-American Studies]. Super Agronom.com, available at: https://superagronom.com/blog/408-yak-pivden-ukrayini-pristosovuyetsya-do-klimatichnih-zmin-ukrayinsko-amerikanski-doslidjennya. [in Ukrainian].
3. Bulyhin, S. Yu. (2003). Rehlamentatsiya tekhnolohichnoho navantazhennya zemel'nykh resursiv [Regulation of the technological load of land resources]. Zemlevporyadkuvannya, 2, 9-12. [in Ukrainian].
4. Veselovs'kyy, I.V., & Behey, S.V. (1995). Gruntozakhysne zemlerobstvo [Soil conservation agriculture]. Kyiv : Urozhay. [in Ukrainian].
5. Medvedyeyev, V.V., Plisko, I.V., Nakis'ko, S.H., & Titenko H.V. (2018). Dehradatsiya hruntiv u sviti, dosvid yiyi poperedzhennya i podolannya [Soil degradation in the world, experience of its prevention and overcoming]. Kharkiv: Styl'na typohrafiya. [in Ukrainian].
6. Yeshchenko, V.O. (2013). No-Till tekhnolohiya: yiyi s'ohodennya ta maybutnye [No-Till technology: its present and future]. Visnyk Umans'koho Natsional'noho universytetu sadivnytstva, 1-2, 4-9. [in Ukrainian].
7. Kovalenko, I. (2021). Pereyty na no-till. Chy varto vzhe s'ohodni minyaty tradytsiyni ustaleni tekhnolohiyi obrobitku gruntu? [Switch to no-till. Is it necessary to change the traditional established technologies of tillage today?] Ahrarnyy biznes. Available at: http://agro-business.com.ua/agro/ahronomiia-sohodni/item/20608-pereity-na-notill.html [in Ukrainian].
8. Kolomiyets', S.S. (2021). Termodynamichna systema gruntu, yoho homeostaz i virohidnyy mekhanizm utvorennya struktury [Thermodynamic system of the soil, its homeostasis and probable mechanism of structure formation]. Visnyk ahrarnoyi nauky, 3, 14-22. [in Ukrainian].
9. Konovalova, V.M., & Didenko, N.O. (2019). Dosvid vykorystannya tekhnolohiyi nou till i pershi rezul'taty [The experience of using the know tell technology and the first results]. Propozytsiya, 9, 56. Available at: https://propozitsiya.com/ua/dosvid-vykorystannya-tehnologiyi-nou-till-i-pershi-rezultaty. [in Ukrainian].
10. Kosolap, M.P, & Krotinov, O.P. (2011). Systemy zemlerobstva No-till: navchal'nyy posibnyk [No-till farming systems: a study guide]. Kyiv : Lohos. [in Ukrainian].
11. Ponomar'ov, O. (2018). Ya ne lyublyu rutynnoyi roboty, a u sil's'komu hospodarstvi ye ekstrym. Super Agronom.com. Available at: https://superagronom.com/articles/167-oleksandr-ponomarov-ya-ne-lyublyu-rutinnoyi-roboti-a-u-silskomu-gospodarstvi-ye-ekstrim. [in Ukrainian].
12. Kolomiiets, S., Bilobrova, A., Vyr’ovka, V., & Tarasenko, T. (2021). Porivnyal'nyy analiz profil'noyi minlyvosti vodno-fizychnykh vlastyvostey chornozemu pry dovhotryvalomu zastosuvanni oranky ta no-till tekhnolohiy (na prykladi Panfyl's'koyi doslidnoyi stantsiyi). [Comparative analysis of profile variability of water-physical properties of chernozem during long-term use of plowing and no-till technologies (on the example of the Panfilsk experimental station).] Melioratsiya i vodne hospodarstvo, 2, 101 - 133. Available at: https://doi.org/10.31073/mivg202102-289. [in Ukrainian].
13. Pryadko, S. (2018). Vprovadzhennya No-till v Ukrayini – rozstavlyayemo krapky nad «i» [Implementation of No-till in Ukraine - dotting the "i"]. Super Agronom.com. Available at: https://superagronom.com/articles/142-sergiy-pryadko-vprovadjennya-no-till-v-ukrayini--rozstavlyayemo-krapki-nad-i [in Ukrainian]. [in Ukrainian].
14. Medvedev, V. V. (2002). Monytorynh pochv Ukrayny. Kontseptsyya, predvarytel'nue rezul'tatu, zadachy [Soil monitoring in Ukraine. Concept, preliminary results, tasks]. Khar'kov: Antykva. [in Ukrainian].
15. Sayko, V.F., & Maliyenko, A.M. (2007). Systemy obrobitku gruntu v Ukrayini [Tillage systems in Ukraine]. Kyiv : VD EKMO. [in Ukrainian].
16. Tararyko, A. H. (1990). Ahroekolohicheskie osnovy pochvozashchitnoho zemledeliya [Agroecological foundations of conservation agriculture]. Kyiv: Urozhay. [in Russian].
17. Shcherbina, N. (2018). No-Till, abo termokul'tury: yak zvil'nytys' vid «kolorada» ta hospodaryuvaty bez dobryv [No-Till, or thermocultures: how to get rid of "Colorado" and farm without fertilizers]. Cherkasy. Available at: https://cheline.com.ua/news/society/no-till-abo-termokulturi-yak-zvilnitis-vid-kolorada-ta-gospodaryuvati-bez-dobriv-120747. [in Ukrainian].
18. Abdollahi, L., Munkholm, L. J., & Garbout, A. (2014). Tillage System and Cover Crop Effects on 324 Soil Quality: II. Pore Characteristics. Soil Science Society of America Journal, 78, 271-325 .
19. Nelson, N.O., Roozeboom, KL., Yeager, EA., Williams, JR., Zerger, SE, Kluitenberg, GJ., Tomlinson, PJ., Abel, DS., & Carver, R. E. (2023). Agronomic and economic implications of cover crop and phosphorus fertilizer management practices for water quality improvement. Journal of Environmental Quality, 52(1), 113-125. DOI: https://doi.org/10.1002/jeq2.20427
20. Aziz. I., Mahmood. T., & Islam. K.R.. (2013). Effect of long term no-till and conventional tillage practices on soil quality. Soil and Tillage Research, 131, 28-35. DOI: https://doi.org/10.1016/j.still.2013.03.002
21. Beltrão, J., Antunes da Silva A., & Asher J.B. (1996). Modeling the Effect of Capillary Water Rise in Corn Yield in Portugal. Irrigation and Drainage Systems, 10, 179-186.
22. Blanco-Canqui, H., & Ruis, S. (2018). No-till and soil physical environment. Geoderma, 326, 164-200. DOI: https://doi.org/10.1016/j.geoderma.2018.03.011
23. Bonfanto, A., Terrible, F., & Bouma. J. (2019). Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: An Italian case study. Soil, 5(1), 1-14. DOI: https://doi.org/10.5194/soil-5-1-2019
24. Busari, Salako FK., & Tuniz, C. (2016). Stable isotope technique in the evaluation of tillage and fertilizer effects on soil carbon and nitrogen sequestration and water use efficiency. European Journal of Agronomy, 73, 98-106. DOI: https://doi.org/10.1016/j.eja.2015.11.002
25. Karbivska, U., Asanishvili, N., Butenko, A., Rozhko, V., Karpenko, O., Sykalo, O., Chernega, T., Masyk, I., Chyrva, A., & Kustovska, A. (2022). Changes in Agro-chemical Parameters of Sod-Podzolic Soil Depend-ing on the Productivity of Cereal Grasses of DifferentRipeness and Methods of Tillage in the Carpathian Region. Journal of Ecological Engineering, 23(1), 55–63. DOI: https://doi/org/10.12911/22998993/143863
26. Chan, K.Y., & Pratley, J. (1997). Soil structural declines — canthe trend be reversed? Agriculture and the environmentalimperative. Impacts of tillage, stubble management, and nitrogen on wheat production and soil properties. CSIRO, Collingwood, Australia, 129–162
Available at: https://www.researchgate.net/publication/309090182_Impacts_of_tillage_stubble _management_and_nitrogen_on_wheat_production_and_soil_properties
27. Šimunić, I., Spalević, V., Vukelić‒Shutoska, M., Moteva, M., & Üzen, N. (2013). Climate Changes and Water Requirements in Field Crop Production. Proceedings‒24th International Scientific‒Expert Conference of Agriculture and Food Industry, 2013 September 25‒28, Sarajevo, Bosnia and Herzegovina, 309‒313.
28. Govendik, A., Potochik, Z., Eler, K., Mihelic, R., & Suhadolc, M. (2023). Combined effects of long-term tillage and fertilisation regimes on soil organic carbon, microbial biomass, and abundance of the total microbial communities and N-functional guilds. Applied Soil Ecology, 188, 104876. DOI: https://doi.org/10.1016/j.apsoil.2023.104876
29. Yan, Q., Wu, L., Dong, F., Zhang, Q., Yang, F., Yan, Sh., & Dong, J. (2021). Continuous tillage practices improve soil water storage and yields of dryland winter wheat grown for three consecutive years in North China, Archives of Agronomy and Soil Science, 69(3), 446-460. DOI: https://doi.org/10.1080/03650340.2021.2004587
30. Islam, K.R., Roth, G., Rahman, M.A., Didenko, N.O., & Reeder, R.C. (2021). Cover Crop Complements Flue Gas Desulfurized Gypsum to Improve No-till Soil Quality. Communications in Soil Science and Plant Analysis, 52(9), 926-947. DOI: https://doi.org/10.1080/00103624.2021.1872594
31. Shukla, S.K., Yadav, R.L., Gupta, R., Singh, A.K., Awasthi, S.K., & Gaur, A. (2018). Deep tillage, soil moisture regime, and optimizing N nutrition for sustaining soil health and sugarcane yield in subtropical India. Communications in Soil Science and Plant Analysis, 49(4), 444-462. DOI: https://doi.org/10.1080/00103624.2018.1431263
32. Galvez, L., Douds, DD., Drinkwater, LE,. & Wagoner, P. (2001). Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant and soil, 228(20), 299-308. DOI: https://doi.org/10.1023/A:1004810116854
33. Everton Alves Rodrigues Pinheiro, & Márcio Renato Nunes (2023). Long-term agro-hydrological simulations of soil water dynamic and maize yield in a tillage chronosequence under subtropical climate conditions. Soil and Tillage Research, 229. 105654. DOI: https://doi.org/10.1016/j.still.2023.105654
34. Ghuman, B.S., & Sur, H.S. (2001). Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate. Soil and tillage research, 58(1-2), 1-10. DOI: https://doi.org/10.1016/S0167-1987(00)00147-1
35. Hula, J., & Novak, P. (2016). Evaluation of soil tillage technologies in terms of soil particle transfer. 15th International Scientific Conference: Engineering for rural development, 812-816.
36. Ilan, Ben-Noah, & Shmulik, F.P. (2018). Review and evaluation of root respiration and of natural and agricultural processes of soil aeration. Vandose Zone Journal, 17, 1-47. DOI: https://doi.org/10.2136/vzj2017.06.0119
37. Rzaliyev, A., Goloborodko, V., Bekmuhametov, Sh., Ospanbayev, Zh., & Sembayeva, A. (2023). Influence of tillage methods on food security and its agrophysical and water-physical properties. Food Science and Technology, 43, 1-9. DOI: https://doi.org/10.1590/fst.76221
38. Islam K.R., Reeder R. No-till and conservation agriculture in the United States: An example from the David Brandt farm, Carroll, Ohio. Intern J. Soil & Water Conserv. 2014. № 2 (1). Pp. 97-107.
39. McCourty, M., Gyawali. A., & Stewart. R.D. (2018). Of macropores and tillage: influence of biomass incorporation on cover crop decomposition and soil respiration. Soil Use and Management, 34(1), 101-110. DOI: https://doi.org/10.1111/sum.12403
40. de Jong van Lier, Quirijn, van Dam, Jos, C., Durigon, Angelica, dos Santos, Marcos A., & Metselaar, Klaas (2013). Modeling water potentials and flows in the soil-plant system comparing hydraulic resistances and transpiration reduction functions. Vadose Zone Journal, 12(3), 1-20 DOI: https://doi.orj/10.2136/vzj2013.02.0039
41. Vozhehova, RA. (Ed.). (2021). No-till systema zemlerobstva v Ukrayini: nauka i praktyka: monohrafiya. [No-till farming system in Ukraine: science and practice] Kherson : OLDI PLUS. [in Ukrainian].
42. Crozier, C.R., Naderman, G.C., Tucker, M.R., & Sugg, R.E. (1999). Nutrient and pH stratification with conventional and no-till management. Commun. Soil Sci. Plant Anal, 30 (1–2), 65–74. DOI: https://doi.org/10.1080/00103629909370184.
43. Parkhomenko, M.M., Lychuk, A.I., Butenko, A.O., Karpenko, O.Yu., Rozhko, V.M., Tsyz, O.M., Chernega, T.O., Tymoshenko, O.P., & Chmel, O.P. (2021). Nitrogen balance in short crop rotations under various systems for restoring sod-podzolic soil fertility. Ukrainian Journal of Ecology, 11(2), 67–71.
44. Badagliacca. G., Benitez, E., Amato, G., Badalucco, L., Giambalvo, D., Laudicina, VA., & Ruisi, P. (2018). Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions. Science of the Total Environment, 639, 350-359. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.157
45. Schmidt, R., Gravuer, K., Bossange, AV., Mitchell, J., & Scow, K. (2018). Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE, 13(2), 1-19. DOI: https://doi.org/10.1371/journal.pone.0192953
46. Frøslev, TG., Nielsen, IB., Santos, SS., Barnes, Ch. J., Bruun, HH., & Ejrnæs, R. (2022). The biodiversity effect of reduced tillage on soil microbiota. Ambio, 51(4). 1022-1033. DOI: https://doi.org/10.1007/s13280-021-01611-0
47. Quirk, J.P. (1994). Interparticle forces: A basis for the interpretation of soil physical behavior. Adv. Agron., 53, 121-183.
48. Rahman M., Didenko N., Sundermeier A., Islam K. Agricultural management systems impact on soil phosphorous partition and stratification. Water, Air, and Soil Pollution. № 232(6). DOI https://doi.org/10.1007/s11270-021-05196-y
49. Responses of soil pH to no-till and the factors affecting it: A global meta-analysis / Zhao X. et al. Global Change Biology. 2022. № 28(1). rr. 154-166. https://doi.org/10.1111/gcb.15930.
50. Sundermeier, A.P, Islam, K.R, Raut, Y., Reeder, R., and Dick, W. 2011. Continuous no-till impacts on biophysical C sequestration. Soil Sci. Soc. Am. J. 75:1779-1788
51. Sharma, P., Singh, G., & Singh, R.P. (2011). Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation. Brazilian Journal of Microbiology. 42, 531-542.
52. Simonovic, S.P., & Li, L. (2004). Sensivity of the Red River Basin Flood Protection System to Climate Variability and Change. Water Resources Management, 18(2), 89-110. DOI: https://doi.org/10.17707/AgricultForest.65.3.01
53. Skaalsveen, K., Ingram, J., & Clarke, L.E. (2019). The effect of no-till farming on the soil functions of water purification and retention in north-western Europe: A literature review. Soil and Tillage Research, 89, 98-109. DOI: https://doi.org/10.1016/j.still.2019.01.004
54. Rodolfo, C.F., Ruan, F.F., Joao, B.W., & Luis, A.R.F. (2023). Soil chemical properties, enzyme activity and soybean and corn yields in a Tropical soil under no-till amendment with lime and phosphogymsum. International Journal of Plan Productivity. DOI: https://doi.org/10.1007/s42106-023-00233-8
55. Lupwayi, N., Clayton, G., O’donovan, J., Harker, K., Turkington, T., & Soon, Y. (2006). Soil nutrient stratification and uptake by wheat after seven years of conventional and zero tillage in the Northern Grain belt of Canada. Can. J. Soil Sci, 86 (5), 767–778. DOI: https://doi/org/10.4141/S06-010
56. Zubeldia, T., Agostini, M.A., Domínguez, G.F., Studdert, G.A., & Tourn S.N. (2018). Evaluación de algunas propiedades físicas de un suelo del sudeste bonaerense bajo distintos sistemas de cultivo XXVI Congreso Argentino de la Ciencia del Suelo, 684–689.
57. Tyler, Hl. (2019). Bacterial community composition under long-term reduced tillage and no-till management. Journal of Applied Microbiology, 126(6), 1797-1807. DOI: https://doi.org/10.1111/jam.14267
58. Wang, J., & Zou. J. (2020). No-till increases soil denitrification via its positive effects on the activity and abundance of the denitrifying community. Soil Biology and Biochemistry, 142, 107706. DOI: https://doi.org/10.1016/j.soilbio.2020.107706
Published
2023-07-02
How to Cite
Didenko, N., Kolomiiets, S., Sardak, A., Islam, K., & Reeder, R. (2023). TILLAGE EFFECTS ON SOIL FUNCTIONAL PROPERTIES: A REVIEW. Land Reclamation and Water Management, (1), 85 - 93. https://doi.org/10.31073/mivg202301-356

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.