Comparison of calculation methods for determining evapotranspiration under drip irrigation
Abstract
The accuracy of calculation methods for determining the evapotranspiration (ET) of corn for grain under drip irrigation in the steppe of Ukraine was established. A comprehensive assessment of calculation methods for soil optimal water regime formation during different growth phases of maize plants was carried out. The accuracy of the estimated value of evapotranspiration was determined by the mean absolute percentage error (MAPE). It has been proven that the use of calculation methods without taking into account the climatic conditions of Southern Ukraine leads to a significant error in determining the actual evapotranspiration. By the Penman-Monteith method, the MAPE of 16.3-26.9% corresponds to the good and satisfactory accuracy of the chosen calculation model. Using the methods of A.M. and S.M. Alpatyev as well as D.A. Stoyko the MAPE increased to 22.2-39.7% and 20.8-29.1%, respectively, which proved their satisfactory accuracy. The calculation method of M.M. Ivanov ensured the MAPE of 48,7-76,8%; that is unsatisfactory calculation accuracy. Adapted crop coefficients Kc for the conditions of the South of Ukraine increased the accuracy of calculating ET by the Penman-Monteith method by an average of 2,2 times, D.A. Shtoyko and A.M. and S.M. Alpatiev by 1,9 and 2,2 times, and M.M. Ivanov by 4,4 times. An analysis of the MAPE using various calculation methods for determining the evapotranspiration of corn for grain under drip irrigation showed that the Penman-Monteith method provides the smallest error (MAPE = 9.1%), which corresponds to high prediction accuracy. In a wet year, the accuracy of ET determination decreases by all methods, which indicates an increase in the MAPE: by Penman-Monteith and D.A. Shtoyko - up to 11.9% and 18.7%, respectively, and the determination accuracy decreases to category “good”. When calculating using the methods of A.M. and S.M. Alpatiev and M.M. Ivanov the MAPE increased to 23,3% and 21,5%, respectively, and the accuracy of ET determination was satisfactory.
References
2. Farg, E., Arafat, S.M,. Abd El-Wahed, M.S., & El-Gindy, A.M. (2012). Estimation of Evapotranspiration ETc and Crop Coefficient Kc of Wheat, in south Nile Delta of Egypt Using integrated FAO-56 approach and remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences, Vol. 15, 83-89. DOI: https://doi.org/10.1016/j.ejrs.2012.02.001
3. Romashchenko, M.I., Shatkovskyi, A.P., & Ryabkov, S.V. (2012). Kraplynne zroshennya ovochevykh kulʹtur i kartopli v umovakh Stepu Ukrayiny [Drip irrigation of vegetable crops and potatoes in the steppe of Ukraine]. Kiev: TOV «DIA» [in Ukrainian].
4. Mall, R. K., & Gupta, B. R. D. (2002). Comparison of evapotranspiration models. Mausam, Vol. 53(2), 119-126 DOI: https://doi.org/10.54302/mausam.v53i2.1627
5. Faybishenko, B.O. (2012). Fuzzy-Probabilistic Calculations of Evapotranspiration. In (Ed.). Evapotranspiration – Remote Sensing and Modeling. IntechOpen. https://doi.org/10.5772/18087
6. Giménez, L., Petillo, M.G., Paredes, P., & Pereira, L.S. (2016). Predicting Maize Transpiration, Water Use and Productivity for Developing Improved Supplemental Irrigation Schedules in Western Uruguay to Cope with Climate Variability. Water, Vol. 8, 309.
DOI: https://doi.org/10.3390/w8070309
7. Lopez-Urrea, R., Santa, O.F., Fabeiro, C., & Moratalla, A. (2006). Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water Management, Vol. 85, 15–26. DOI: https://doi.org/10.1016/j.agwat.2006.03.014
8. Trajkovic, S., & Kolakovic, S. (2015). Evaluation of Reference Evapotranspiration Equations Under Humid Conditions. Water Resour Manage, Vol. 23, 3057
DOI: https://doi.org/10.1007/s11269-009-9423-4
9. Djaman, K., Balde, A.B., Sow, A., Muller, A.B., Irmak, S., N’Diaye, M.K., Manneh, B., Moukoumbi, Y.D., Futakuchi, K., & Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. J. Hydrol. Reg. Stud, Vol. 3, 139–159. DOI: https://doi.org/10.1016/j.ejrh.2015.02.002.
10. Romashchenko, M., Shatkowski, A., & Zhuravlev, O. (2016). Features of application of the «Penman – Monteith» method for conditions of a drip irrigation of the Steppe of Ukraine (on example of grain corn). Journal of Water and Land Development, Vol. 31, 123-127.
DOI: https://doi.org/10.1515/jwld-2016-0043
11. Djaman, K., O’Neill, M., Owen, C.K., Smeal, D., Koudahe, K., West, M., Allen, S., Lombard, K., & Irmak, S. (2018). Crop Evapotranspiration, Irrigation Water Requirement and Water Productivity of Maize from Meteorological Data under Semiarid Climate. Water, Vol. 10, 405. DOI: https://doi.org/10.3390/w10040405
12. Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. Rome: FAO. Retrieved from: http://www.fao.org/3/x0490e/x0490e00.htm
13. Shatkovskyi, A.P., & Zhuravlov, O.V. (2016). Upravlinnya kraplynnym zroshennyam na osnovi vykorystannya internet-meteostantsiy iMetos® [Drip irrigation management based on the use of iMetos® Internet Weather Stations]. Naukovi dopovidi NUBiP Ukrayiny, Vol. 2 (59). Retrieved from: http://journals.nubip.edu.ua/index.php/Dopovidi/article/view/6489/6373 [in Ukrainian]
14. Alpatiev, S.M. (1974). O metodakh rascheta potrebnosti v vode kul'turnykh fitotsinozov v svyazi s razvitiyem orosheniya v SSR [On methods for calculating the water demand of cultural phytocenoses in connection with the development of irrigation in the Soviet Socialist Republic]. Biologicheskiye osnovy oroshayemogo zemledeliya, Vol. 1, 85-89. [in Russian].
15. Shtoiko, D.A, Pisarenko, V.A, Bychko, O.S, & Elazhenko, L.I. (1977). Rozrakhunkovi metody vyznachennya sumarnoho vyparovuvannya i strokiv polyvu silʹsʹkohospodarsʹkykh kulʹtur [Calculation methods for determining the total evaporation and watering dates of crops]. Zroshuvane zemlerobstvo, Vol. 22, 3-11. [in Ukrainian]
16. Ivanov, N.N. (1954). Ob opredelinii velichin isparyayemosti [On the determination of evaporation values]. Izvestiya VGO, Vol.2 (86), 189-196. [in Russian].
17. Zhuravlov, O.V. (2021). Naukovo-praktychne obgruntuvannya metodiv upravlinnya vodnym rezhymom gruntu v zroshuvanykh umovakh [Scientific and practical substantiation of methods of soil water regime management in irrigated conditions]. Extended abstract of Doctor's thesis. Kiev: IWPiM NAAS. Retrieved from:
https://drive.google.com/file/d/1RqzzNy7hKextVs00MXgQnwfC3_EN_9xt/view [In Ukrainian]
18. Ukrainian Hydrometeorological Center. (2021). Klimatychni dani po m. Askaniya-Nova za period z 1899 roku [Climate data for Askaniya-Nova for the period from 1899]. Kiyv. Retrieved from: https://meteo.gov.ua/en/33902/climate/climate_stations/159/24/ [In Ukrainian]
19. Goryanskiy, M.M. (1970). Metodika polevogo opyta na oroshayemykh zemlyakh [Methodology of field experiment on irrigated lands]. Kiyv: Izd. Urozhay [In Russian].
20. Pisarenko, V.A., Gorbotenko, E.M., & Jokich, D.R. (1988). Rezhimy orosheniya sel'skokhozyaystvennykh kul'tur [Irrigation regimes for agricultural crops]. Kiyv: Urozhay [In Russian].
21. Shcherbakov, M.V., Brebels, A., Shcherbakova, N.L., Tyukov, A.P., Janovsky, T.A., & Kamaev, V.Ae. (2013). A Survey of Forecast Error Measures. World Applied Sciences Journal, Vol. 24, 171-176. DOI: https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032
22. Sak, A.V. (2006). Prognozirovaniye i planirovaniye ekonomiki [Forecasting and planning of the economy]. Minsk: BGUIR. [In Russian].